skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Zhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 26, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Pixel reconstruction filters play an important role in physics-based rendering and have been thoroughly studied. In physics-based differentiable rendering, however, the proper treatment of pixel filters remains largely under-explored. We present a new technique to efficiently differentiate pixel reconstruction filters based on the path-space formulation. Specifically, we formulate the pixel boundary integral that models discontinuities in pixel filters and introduce new antithetic sampling methods that support differentiable path sampling methods, such as adjoint particle tracing and bidirectional path tracing. We demonstrate both the need and efficacy of antithetic sampling when estimating this integral, and we evaluate its effectiveness across several differentiable- and inverse-rendering settings. 
    more » « less
  4. Boundary integrals are unique to physics-based differentiable rendering and crucial for differentiating with respect to object geometry. Under the differential path integral framework---which has enabled the development of sophisticated differentiable rendering algorithms---the boundary components are themselves path integrals. Previously, although the mathematical formulation of boundary path integrals have been established, efficient estimation of these integrals remains challenging. In this paper, we introduce a new technique to efficiently estimate boundary path integrals. A key component of our technique is a primary-sample-space guiding step for importance sampling of boundary segments. Additionally, we show multiple importance sampling can be used to combine multiple guided samplings. Lastly, we introduce an optional edge sorting step to further improve the runtime performance. We evaluate the effectiveness of our method using several differentiable-rendering and inverse-rendering examples and provide comparisons with existing methods for reconstruction as well as gradient quality. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)